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Abstract

Bipolar leadracid batteries offer the possibility of increased energy and power density. This paper presents the results of a theoretical
and experimental study into the performance of a bipolar construction. A model that calculates the ohmic losses in a bipolar lead acid
battery has been used to predict the cell voltage during discharge. The calculated discharge curves are in good agreement with
experimental results obtained with a 6 V lead membrane bipolar prototype. In a second part the conductivity of the bipolar plates have
been adjusted in the program to estimate its influence on battery performance. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

The use of the bipolar design Fig. 1 is certainly the best
way to improve the specific energy of a leadracid cell. It
presents two basic advantages compared with grid designs.
The ohmic losses between positive and negative active
material are lower. This allows the use of less conductive
composites that can greatly reduce the battery weight.
Because of the frontal collection of electrical charges, the
current distribution is uniform and active materials work
more homogeneously. This results in an improvement of
the battery efficiency. Nevertheless, as the conductivity of
the bipolar membrane decreases, the voltage distribution
becomes less and less uniform and if conductivity is too
low, the performance will be limited. The calculation of
voltage distribution in the bipolar stack allows this limit to
be determined. Very few papers deal with bipolar lead acid

w xbattery modelling. Wen-Hong 1 , whose program is an
extension of that introduced by Tiedemann and Newman
w x2 , studies the influence of the membrane or active mate-
rial thickness and discharge rate on bipolar leadracid

w xbattery performance. Scott 3 calculated the current distri-
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bution in a bipolar assembly. The battery is modelled by a
stack of materials of different resistivities. He analytically
solved the problem for some specific cases. This approach
does not apply in a general case and furthermore, it does
not take into account electrochemical aspects. Mao and

w xWhite 4 calculated the voltage distribution for the
HORIZON w quasi bipolar leadracid battery. The Butler
Volmer expression is used to describe electrochemical
overvoltage and they solved the equation with a finite
element method.

Potential distribution has been calculated by some au-
thors in the standard case of grid design but not for bipolar

w xdesign. Morimoto et al. 5 presents a model where poten-
tial distribution is calculated from grid resistivity and
experimental polarisation data. After calculating the poten-
tial distribution for one state of charge, he simulates the
whole discharge by adjusting each battery component re-

w xsistivity. Sunu and Burrows 6,7 have a similar approach,
at first, they modeled the grid as a resistive network and
calculate the associated potential distribution. They ad-
justed the resistivity of each component to simulate the
discharge. In this case electrochemical overvoltage evolu-
tion is neglected.

We have developed a model to calculate the current and
potential distribution in the case of a bipolar stack. This
allows the study of influence of both membrane conductiv-
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Fig. 1. Schematic diagram of a polar lead acid cell.

ity and rate of discharge on battery efficiency. The method
is similar to that used by Morimoto et al. or Sunu and
Burrows but in the case of a bipolar stack. A resistive
matrix representative of the battery is calculated for each
step of discharge. The calculation of the voltage distribu-
tion is based on this matrix, using the Gauss Seidel
method. The Butler Volmer expression is used as a model
for charge transfer overvoltage and a specific calculation is
made to introduce the influence of diffusion in this expres-
sion.

2. Mathematical model

For each state of charge the overall battery voltage is
considered to be the difference between the equilibrium
voltage and both ohmic losses and electrochemical over-
voltages.

The battery is represented by a resistive network. A two
dimensional mesh is applied on a plane that crosses the
end terminals.

The resistivity of each component in this matrix that
represents the battery is reported. An additional resistive
term is used to simulate the effect of electrochemical
phenomena. This term is introduced in the resistive matrix,
at the interface between the active material and the elec-
trolyte. This matrix and the discharge current are used to
calculate the potential distribution.

2.1. Fundamental equations

Assuming that a discharge is a succession of steady
states, governing laws are: conservation of electrical charge

™ ™ ™ ™
at each point: Div js0 with js j q j resulting inx y

d j d jx y
q s0 1Ž .

d x d y
™ ™ ™ ™

Ohm’s law can be written: jss EE but as EEsygradV
the current density becomes:

d V d V
j sys j sys 2Ž .x y

d x d y

Ž y2 . Ž .where: j, current density A cm ; V, voltage V ; s ,
Ž y1 . Ž y1 .conductivity S cm ; E, electrical field V cm

The equation to give the result is:

d V x , yŽ .d V x , yŽ .
d s x , yŽ .d s x , yŽ . ž /ž / d yd x

q s0
d x d y

3Ž .

for constant conductivity this equation takes a Laplacian
form.

2.2. Resolution

A numerical method is used to solve this problem. The
equation has been discretised and partial difference ap-
proximated by finite difference. Then the equation to be
solved becomes:

aqbqcqd V qaV qbV qcVŽ . Ž i , j. Ž iq1, j. Ž iy1, j. Ž i jq1.

qdV s0 4Ž .Ž i jy1.

with:

s iq1, j s i , j s i , jq1Ž . Ž . Ž .i i j
as , bs , cs ,2 2 2Dx Dx D y

s i , jŽ .j
ds 2D y

This equation was solved by a computer using the
Gauss Seidel method that is suitable for elliptic problems.
It is an iterative method, the solution calculated at the step
k is used to calculate those at step kq1. The calculations
become:

Ž . Ž . Ž . Ž .aV iq1, j q bV iy1, j qcV i , jq1 q dV i , jy1k k k kŽ .V i , j skq 1 aq bqcq d

5Ž .

The initial distribution potential is calculated assuming that
all layers of the stack are equipotential.
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3. Electrochemical overvoltages

With this resolution method it is not possible to take
into account the electrochemical phenomena directly,
therefore, they have been represented by the equivalent
ohmic losses through a resistance. This resistance is equal
to the ratio of overvoltage on current and it is introduced
in series between the active materials and the electrolyte.
In this approach, the electrochemical overvoltages over the
whole electrode are represented by a single value. It allows
calculation of a new potential distribution. By successive
iterations, electrochemical overvoltages are correctly taken
into account.

3.1. Charge transfer oÕerÕoltage

The charge transfer overvoltage can be expressed by the
Butler Volmer expression:

a nF
Is I exp EyEŽ .0 eqž /RT

y Iya nFŽ .
yexp EyE 6Ž .Ž .eqž /RT

Ž . Ž .where: I, total current A ; I , equilibrium current A ; E,0
Ž .electrode potential V ; E , Electrode standard potentialeq

Ž .V ; n, F, R, T have their usual meanings.
The overvoltage is defined as the difference between

the equilibrium potential and the electrode potential.

h sEyE 7Ž .t eq

The charge transfer coefficient a whose value is very
w xclose to 0.5 9 has been replaced by this value in the

preceding formula, then:

RT I
h s arcsinh 8Ž .t ž /nF 2 I0

this expression establishes a direct link between current
and overpotential.

3.2. Penetration length

Because of diffusion, only part of active material takes
part in the reaction. It is possible to define a penetration

w xdepth beyond which the reaction is negligible. De Levie 8
gave an expression of this length:

nF
X sCD 9Ž .react ) j Iy´Ž .

Ž y2 .where: j, current density A cm ; ´ , active material
Ž . y3porosity % ; C, electrolyte concentration mole cm ; D :

)

Ž 2 y1.Diffusion coefficient inside the active material cm s .
It is considered that, if the thickness of the electrode

exceeds this value, the inner part of the active material
does not take part in the reaction.

3.3. Diffusion effect

The effect of concentration varies at each point of the
electrode, therefore, it is not possible to represent such a
phenomenon by a single value. By assuming that the
global overvoltage due to the charge transfer and to the
diffusion effects remains constant at each point of the

Želectrode when diffusion effects increase, the reaction and
.the charge transfer overvoltages decrease all the electro-

chemical phenomena are taken into account by a single
value.

At the surface of the electrode, electrochemical over-
voltage is only due to charge transfer, therefore by calcu-
lating the reaction current density j at the surface of themax

electrode, it is possible to calculate with the Butler Volmer
expression a value that represents overvoltage at each
point of the electrode.

A specific calculation has been made to determine the
reaction current density distribution all over the electrode.

At first, we can assume that the ratio jrC is constant
through the thickness of the electrode, assuming that h

remains constant and that the concentration effect can be
w xtaken into account in the Butler Volmer expression 9 by

the following expression:

C x nF nFŽ .
j x s j exp h yexp y hŽ . 0 ž / ž /ž /C 2 RT 2 RTel

10Ž .

Ž y3 .where: C , bulk electrolyte concentration mole cm ;el
Ž 2 y3.S , specific area cm cm ; j , Equilibrium currentS 0

Ž y2 . Ž . Ž y2 .density A cm ; j x , reacting current density A cm .
This hypothesis has been used in the following calcula-

tion of the concentration profile.
Ž .If N x is the ionic fluxes at each point, we can write

w x10 :

dN x y1Ž .
s j x S 11Ž . Ž .S

d x nF

The decrease of the ionic flux is due to the part of
species that reacts to generate an electrical current in the
solid phase of the electrode.

The first Fick law can be written:

d C xŽ .
N x syD 12Ž . Ž .

d x

Ž . y2 y1N x , species flux mol cm s
The equation to be solved is:

d 2 C l
s j x S 13Ž . Ž .S2 nFDd x

Ž . Ž .And j x rC x is constant, if we take:

S j nF nFS 0
As exp h yexp y h ,ž / ž /ž /nFDC 2 RT 2 RTel
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we obtain the following equation:

d 2 C xŽ .
sAC x , 14Ž . Ž .2d x

and with the initial conditions:

d C
xs0, C 0 s0, xse, s0,Ž .

d x

it results in:

' ' 'exp y Ax qexp y2 Ae exp AxŽ . Ž . Ž .Ž .
C x sCŽ . el '1qexp y2 AeŽ .

15Ž .

the total current density is the sum of the reacting current
density all over the electrode thickness:

c
j x S dxs jŽ .H S tot

o

becomes:

'j lyexp y2 AeŽ .tot 's A 16Ž .'C nFD lqexp y2 AeŽ .el

.
Using numerical procedures, it is possible to determine

A for different values of the total current. The calculated
concentrations along the electrode thickness are reported in
Fig. 2 for various current densities.

This calculation shows that, as the rate of discharge
increases, the electrolyte concentration inside the porous
material becomes less uniform and the penetration depth
decreases. Furthermore, it allows the definition of the
reaction current density j at the surface of the electrode.max

It is used in the Butler Volmer expression. The overvoltage
value obtained gives a good idea with a single value of
both charge transfer and diffusion for all the electrode
thicknesses.

4. Evolution during discharge

4.1. EÕolution of equilibrium Õoltage

The equilibrium voltage depends on electrolyte concen-
tration. The average concentration can be easily deduced
from the discharged capacity by the following calculation:

3600Q I
CsC y 17Ž .i nF Vel

.
Concentration can also be expressed in weight percent-

age W. In this case, it is deduced from the preceding value:

M CH SO2 4Ws100 18Ž .
M CqM CŽ .H SO H O H O2 4 2 2

Ž y1 .M, molar mass g mol with

M dH SO H O2 4 2C s 1yCH O2 ž /d MH SO H O2 4 2

This notation is more practical to express the equilib-
rium voltage dependence:

E s1.848q7.42P10y3W 19Ž .eq

w xThis relation is given by Biscaglia 10 in his thesis and
it is close to reality for the 5 to 40 weight percentage
range.

The equilibrium voltage is added due to ohmic and
electrochemical losses, to obtain the overall voltage of a
cell.

4.2. Ohmic conductiÕity eÕolution

Lead dioxide conductivity depends on crystalline phase
Ž .a or b , and the value varies from one reference to

Fig. 2. Electrolyte concentration vs. penetration depth for different values of discharge current density.
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Table 1
Evolution of the exponent n in the Peukert relation vs. discharge rate.

Discharge time Exponent n value

5 h 1.05
1 h 1.099
30 min 1.117
10 min 1.143

y1 w xanother. A value of 200 S cm seems correct 10 . Lead
conductivity, at the negative electrode, is well defined:
ss48 000 S cmy1.

The active material has a high porosity and the real
conductivity can be estimated from its component conduc-

w xtivity by the Bruggeman expression 9,11 :
1.5

s ss 1y´ 20Ž . Ž .MA

where: ´ , active material porosity; s , conductivity ofMA
Ž y1 .porous active material S cm ; s , conductivity of non-

Ž y1 .porous material S cm .
The conductivity of active material decreases when the

active material reacts to form lead sulphate and the inter-
face between active material and electrolyte progressively
becomes insulated. It is usually accepted that this evolution

w xis linear with discharged capacity 7 :

Q
s ss 1y 21Ž .MA MA ,i ž /Qtot

where Q is the electric capacity and Q is the referencetot

discharge capacity.
The ionic conductivity of sulphuric acid depends on its

concentration and the conductivity vs. weight percentage
w xacid concentration can be fitted by 10 :

23 y0.288s ss exp y2.61P10 W WyW 22Ž . Ž .Ž .el max max

Ž y1 .where s 0.76 S cm is the maximum conductivitymax
Ž .and W 31.3% the concentration percentage at thismax

conductivity.

4.3. Electrochemical oÕerÕoltage

During discharge the charge transfer overvoltage
steadily increases because of decreasing reacting area due

w xto coverage of active material by sulphate crystals 12,7 :

Q
S sS 1y 23Ž .S S ,i ž /Qtot

where S is the specific area of the fully charged electrode.S

The diffusion overvoltage increases too. We have con-
sidered that this evolution is mainly due to the decrease in
the diffusion coefficient with electrolytic concentration,

w xthis coefficient linearly increases with concentration 13 :

DsD 0.706q58.8C , D s7.2P10y6 cm2 sy1Ž .i i

24Ž .

5. Experimental: model validation

The results obtained with the model have been adjusted
with experimental data measured with a 6 V, 2.5 A h lead
membrane prototype.

Two parameters have been used to fit experimental
data.

The reference discharge capacity depends on the rate of
discharge because the lead sulphate crystals become smaller

w xand more numerous as the discharge current increases 13
and it causes a decrease in the available capacity because
the reacting area will rapidly decrease. The Peukert rela-
tion I ntsk is used to evaluate this capacity for each rate.

The constant k is calculated for the 20 h rate discharge
and the exponent n is adjusted for each rate of discharge.
The results obtained are reported in Table 1.

The value of this exponent increases with the discharge
rate. Therefore, it confirms the hypothesis that, for increas-

Fig. 3. Model validation for different values of the exchange current density.
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Fig. 4. Available energy vs. membrane conductivity for different rates of discharge and with current uniformly distributed on the end membranes.

ing discharge current, the available capacity is not only
limited by diffusion problems but also by evolution of
sulphate crystal size.

The exchange current density j is the second parame-0

ter used to adjust the model. It is higher for the negative
electrode, and the resulting overvoltages are lower than on
the positive electrode. So the exchange current density is
more significant for the positive electrode. Its value is the
only one to have been used to adjust the model. The values
of this parameter are not well defined and vary from one
reference to another.

w x y3 y2Biscaglia uses Bode’s 8 value of 0.16.10 A cm in
calculations. Laffolette considers that the value can range

y3 y2 w xfrom 0.2 to 2.4P10 A cm and Dasoyan and Aguf 14
report calculated values that range from 0.015 to 4.9P10y3

A cmy2 .

The values used to adjust the model range from 0.1P

10y3 to 1.5P10y3 A cmy2 . The results obtained for a 30
min discharge are reported on Fig. 3.

The best fit is obtained for j s0.5P10y3 A cmy2 .0

This value has been used for the 20 h, the 5 h, the 30 min
and the 10 min rates and shows good agreement.

The difference observed at the beginning of the dis-
charge is due to the ‘coup de fouet’ effect that has not
been taken into account.

6. Performance predictions for composite membranes

This model has been used to predict the available
energy when the membrane conductivity decreases. Two
different cases have been evaluated.

Ž .Fig. 5. Membrane conductivity for 80% available energy compared to lead membrane vs. discharge duration.
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Fig. 6. Available energy vs. membrane conductivity for different rates of discharge and with composite end membranes.

6.1. Uniform Õoltage distribution on end plates

At first, the voltage distribution is uniform on the end
plates. It is the most efficient configuration for a bipolar
assembly. The prediction has been made for a 6 V cell but
the result would have been the same whatever the number
of cells. The energy available with a lead membrane is
taken as a reference to normalize other values that have
been reported in Fig. 4 for different rates of discharge.

For a discharge duration greater than 10 min, a mem-
brane conductivity of 1 S cmy1 will never be performance
limiting and for slower rates of discharge a membrane with
a conductivity as low as 0.1 S cmy1 is sufficient.

The rates corresponding to a 20% decrease in available
energy vs. membrane conductivity have been reported on
Fig. 5. The evolution of conductivity vs. rate is linear. So
it is possible to extrapolate this curve for higher discharge
rates.

Nevertheless, for very high rates of discharge if the
membrane conductivity is greater than the electrolyte con-

Ž y1 .ductivity s -0.76 S cm , the membrane conductivityel

will not be performance limiting and the preceding curve,
which is linear, will reach an upper limit at about 10 S
cmy1.

6.2. Effect of end membrane conductiÕity

In another approach, we studied the effect of the end
membrane conductivities Fig. 6. When voltage distribu-
tions are not uniform on the end membrane, the battery
efficiency will increase with the number of cells, because
the current distribution will become more uniform on the
inner cells. As it seems interesting to study the less

favourable case to really evaluate the influence of this
parameter, we made the calculation for a single cell bat-
tery.

In the case of non-uniform potential distribution on the
end membranes, the conductivity that avoids a loss of
energy up to a 10 min discharge rate is greater than 100 S
cmy1. This conductivity is a hundred times higher than in
the previous case.

So the current must be well distributed on the end
electrodes to take advantage of the bipolar design and the
conductivity of the end plates is critical.

7. Conclusions

A mathematical model was developed which can pre-
dict the voltage distribution on bipolar leadracid batteries.
It takes into account charge transfer overvoltages, diffusion
effects and ohmic losses. Calculated discharge curves are
in good agreement with experimental data. This model
allows the influence of any parameter on discharge perfor-
mances to be evaluated. Primarily, the influence of the
membrane conductivity has been studied. The current must
be uniformly distributed on the end membranes. Their
conductivity is of prime importance because values below
100 S cmy1 will be performance limiting. But, providing
that the current on the end plates is uniformly distributed,
it appears that a conductivity of 1 S cmy1 is sufficient to
ensure equivalent performance as for lead membranes up
to a 10 min discharge rate and that a conductivity of 10 S
cmy1 will never be performance limiting whatever the rate
of discharge.
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8. List of symbols

a Transfer coefficient
y3C Concentration mol cm

2 y1D Diffusion coefficient cm s
d density
e Electrode thickness cm
´ Porosity

y1EE Electric field V cm
E Electrode potential V
E Standard electrode0

potential V
y1 y1F Faraday’s constant C mol , A s mol

h Electrochemical
overvoltage V

I Total current A
I Equilibrium current A0

y2j Current density A cm
y1k Kinetic reaction constant m s
y1k Kinetic standard constant m s0

y1M Molar mass g mol
y2 y1N Species flux mole cm s

n Number of equivalents
transferred per mole of
reactant

Q Electric capacity A h
y1 y1R Universal gas constant J K mol
2S Surface cm

y1s Conductivity S cm
2S Apparent electrode area cma

S Specific area of theS
2 y3electrode cm cm

T Temperature K
t Time h
V Electric voltage V

3V Electrolyte volume cmel

W H SO weight2 4

percentage

Subscript
U

Porous material inner
a Anodic
c Cathodic
d Diffusion
el bulk electrolyte
eq Equilibrium
H O Water2

H SO Sulphuric acid2

i Initial
MA Active material
max Maximum
moy Average
ox Oxidant
Pb Lead
PbO Lead dioxide2

red Reductant
t Charge transfer
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